
Clustering and Dependencies in Free/Open
Source Software Development:

Methodology and Tools1

Rishab Aiyer Ghosh (rishab@dxm.org)

Senior Researcher, University of Maastricht / MERIT

(www.infonomics.nl)

Abstract: This paper addresses the problem of measurement of non-monetary economic activity,
specifically in the area of free/open source software2 communities. It describes the problems associated
with research on these communities in the absence of measurable monetary transactions, and suggests
possible alternatives.. A class of techniques using software source code as factual documentation of
economic activity is described and a methodology for the extraction, interpretation and analysis of
empirical data from software source code is detailed, with the outline of algorithms for identifying
collaborative authorship and determining the identity of coherent economic actors in developer
communities. Finally, conclusions are drawn from the application of these techniques to a base of
software.

1 An early version of this paper was presented at the IDEI/CEPR Workshop on "Open Source Software:

Economics, Law and Policy", June 20-21, Toulouse, France. Support for this revised version was drawn from the
Project on the Economic Organization and Viability of Open Source Software, which is funded under National
Science Foundation Grant NSF IIS-0112962 to the Stanford Institute for Economic Policy Research. (see
http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm)

2 “Free Software” is the original, correct and more popular term by far among practitioners
(http://floss1.infonomics.nl/stats.php?id=1) but is functionally equivalent to the more recent, publicity and
business-friendly term “open source”. Given the apparent political weight given to these terms
(http://floss1.infonomics.nl/stats.php?id=2) we use the neutral abbreviation FOSS, and unless specified, mean both
terms wherever any one is used.

http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm
http://floss1.infonomics.nl/stats.php?id=1
http://floss1.infonomics.nl/stats.php?id=2

Table of contents
1. Defining the problem: non-monetary implicit transactions3
1.1. Background: the best things in life are free?..3
1.2. When a gift is not a gift..3
2. Forms of research and the role of measurement ..4
2.1. Free software as a way of life ..5
2.2. Open Source as a way of work...5
2.3. Open Source as a way of software development ...6
3. Where is the data on FLOSS activity? ...7
4. Non-monetary measurement ..8
5. Free software developers: a starting point for measurement..............................10
5.1. How software tells its own story..10
5.2. What may be inferred...11
6. What is in the source: extracting empirical data from software source code.....12
6.1. Authorship information..13
6.1.1. Alternative methods ...14
6.1.2. Project “culture” and code accreditation..14
6.2. Size and integrity ...15
6.3. Code dependency between packages ...16
6.3.1. Identifying function definitions as an aid to dependency analysis.....................17
6.4. Clusters of authorship ..18
6.4.1. Building clusters ..20
6.4.2. Analysing clusters: collaborators and non-collaborators21
6.4.3. Clustering and dependency: cause and effect?...22
6.5. Technical details: summary methodology and data structure23
6.5.1. Table 2: Stages of analysis and resulting data format..23
7. Conclusion, Outlook, and practical considerations..24
7.1. The FLOSS source code scan / Orbiten 2 ..24
7.2. LICKS: Studying multiple versions of the Linux kernel25
8. Annexure: References and Literature...27

1. Defining the problem: non-monetary implicit transactions
1.1. Background: the best things in life are free?

One notable aspect of open source software development is the hidden – and often

non-existent – role played by money. Although not unique in the context of the Internet, this

does complicate an understanding of open source as an economic phenomenon. Subjecting

this phenomenon to an economist's analysis does not necessarily require the abundant and

overt use of money, but it does require the ascribing of some economic motives to

participants. It also requires methods of measurement, to substitute for the measurement

otherwise provided by a visible use of money.

Furthermore, most descriptions of the open source phenomenon rely on ideology or

anecdotes, rather than any hard data. Non-monetary methods of economic measurement are a

way of providing such data, and current work explores and implements such methods in the

open source context (admittedly with the aim, in part, of backing up anecdotal models of the

phenomenon's functioning). Some measurement indicators include: concentration of

contribution and authorship; formation of collaborative author communities; dependency and

"trade" between such communities3.

1.2. When a gift is not a gift

The precise degree and influence of altruism or gift-giving – which are quite separate

things – on open source is a matter for further research. What is clear is that the analysis of

the open source phenomenon is complicated by the fact that it is not a priced market, nor is it

well described by the literature on barter exchanges. Literature in that field is rare. A model

describing the free software/open source phenomenon as a “cooking-pot market” of largely

non-monetary economic activity explains why the transactions are implicit4.

3Orbiten Free Software Survey OFSS01, May 1999; OFSS02, February 2002, http://orbiten.org;

Free/Libre and Open Source Software Study (EU project FLOSS), on-going, www.infonomics.nl/FLOSS/
4 This model is based on two observations: first, though of obvious utility to consumers, information

products on the Internet have near-zero marginal costs of duplication and distribution for their producers though
there may be significant one-time costs of creation. Second, the universe of “free” collaborative content production
on the Internet may lack visible one-to-one transactions, but the continuing awareness of a quid pro quo among
participants suggests that transactions are implicit rather than absent. The “cooking-pot” model hypothesises that
participants contribute their products to a delineated commons, or “cooking-pot”, in a sort of exchange – with
implicit one-to-many transactions – of the one-time production cost with the value gained from individual access
to a diversity of products contributed by others. There are other parallel motives for contribution, but this is one of
the main economic ones, and also happens to be in some sense quantifiable. This model is described in detail in
Ghosh 1998.

http://orbiten.org/

A comparison of some of the properties of priced markets, barter exchanges and

cooking-pot markets is listed in table 1. It shows that if open source follows the cooking-pot

market model, research into its functioning is significantly hampered by the lack of

quantifiable data points, the implicit nature of transactions, indirect nature of rewards, and

above all the inability to use existing, well-tested tools and techniques for measurement,

analysis and modelling. This handicap runs through all the lines of research further described

below.

Table 1: What sort of market? A comparison

Priced markets Barter exchanges Cooking-pot markets

Price tags No price tags, but exchange
rates for types of barter goods –
i.e. relative price tags – are
available

No price tags

Priced transactions –
buying/selling – at every step

Identifiable barter transactions –
trades – at every step

Few identifiable transactions –
production is gratis, and value is
received from the whole
network with no explicit
linkage; only a value flow5

Quantifiable by price and
volume (number of transactions)

Partly quantifiable by relative
size and number of transactions

Not directly quantifiable – no
price tags to add up; no
transactions to count

Tangible benefits direct by
proxy (money to buy other
things); quantifiable

Tangible benefits direct (end-
products exchanged); partly
quantifiable

Tangible benefits indirect and
hard to quantify

Intangible benefits less
important, less direct?

Intangible benefits less
important, less direct?

Intangible benefits apparent
(reputation; sense of
satisfaction, etc) but indirect

2. Forms of research and the role of measurement
Human activity can be studied from various perspectives: collective action can be

explained as the functioning of a rational economic marketplace, a law-abiding jurisdiction,

or a community with a common belief-system, for example. Similarly, individual action can

be credited to rational economic self-interest; subscription to a set of rules or fear of

punishment for their violation; or an altruistic satisfaction in the good of others6. Often, the

same act can be described from an economic, legal or sociological perspective ascribing

motives to the acting individual or collective that may all coexist.

5 Ghosh, 2003
6 Ghosh 1996

Which motives to credit – and hence which method of study to use – is determined by

the purpose of study, the degree to which the actors are conscious of their motives and of

course the interest of the persons conducting such study.

Research into free/open source software depends on these different perspectives

towards defining what free/open source is. Since it is many things to many people, often all at

the same time, various aspects of open source are researched into in various ways. I classify

these as follows: Open source as a way of life; a way of work; and a way of software

development – but all are dependent on measurement of dynamics within the developer

communities.

2.1. Free software as a way of life

FLOSS is often termed, by its own adherents, as a philosophy (as in: “the Free

Software Philosophy”7). Open source participants adopt a rationale for their actions different

from that of their peers in the proprietary software world. (Seemingly, at any rate; there are of

course many who are active in proprietary as well as open source worlds.) The concepts of

community, gift, shared ideals and so forth are often brought up by FLOSS participants as

well as researchers into the phenomenon. The existence, validity, role and degree of influence

of such concepts are topics that should be further investigated, with a return to first principles

of social anthropology. The motives that drive open source participants clearly determine the

development of the phenomenon as an economic or socio-legal force, and thus have much

bearing on the following two lines of research.

Motives play a role, of course, in any monetary economic scenario as well – however,

there not only is profit maximisation as the leading motive assumed, it can also be backed up

and explained with the existence of empirical data (such the presence of profit margins in any

market). Such monetary data is not available for FLOSS communities except at the anecdotal

level for a very unrepresentative sample subset (“star programmers” and the rare profitable

open source company). The main reason for this lack of data is the fact that monetary

transactions are largely non-existent within the FLOSS production process. Given this

absence, any other form of data that can provide an empirical basis for arguments on

motivation, sense of community, social and political coherence is clearly crucial.

2.2. Open Source as a way of work

It is a fact. There are people who make a living not being paid cash for software they

write. This raises many questions. One set is related to survival in the monetary economy

7 http://www.gnu.org/philosophy/philosophy.html

(“How do they order pizza?”)8 – what sort of a living do such people make; who pays them

and why; what benefits accrue to employers of such people who pay for what may be freely

available. Another set of questions is related to the non-monetary economy that results from

the production of goods without payment – if they’re not receiving cash for their software,

what, if anything, do they receive instead? And how much? What do they give for access to

other free software?

The value of money as a measuring tool is immeasurable. Lacking this, alternatives

must be found in order to identify power structures; ownership and effective control of

systems; vulnerabilities and dependencies in the “economy” surrounding open source

systems. To illustrate: Microsoft’s position in the economy is easy enough to analyse, since

its property and influence is quantified in monetary terms; but the position of Linus Torvalds

or the Apache team is hard to quantify even within the open source community (let alone in

the economy at large), even if a system of definable reputation is accepted as a way of doing

so.

The further development of measurement and modelling methods is, therefore,

crucial to the understanding and better functioning of open source, and its integration into the

monetary economic system. Examples of such measurement methods were given at the

beginning of this paper and are elaborated in the section on methodology and techniques, but

obviously the development of new methods is an area for further research.

2.3. Open Source as a way of software development

Finally, open source is a method of developing software. It is often quite different

from the formal development methodologies of proprietary software companies. The element

of collaborative authorship is much discussed; less so is the element of competition

(proprietary software, developed in-house in a single firm, is directed from above and lacks

the non-coercive Darwinism of bottom-up distributed software development).

As a software development technique open source faces several challenges:

intellectual property rights (use of proprietary IPR as well as the protection of open source

IPR); software quality and reliability; version control and responsiveness to environmental

changes; credit and liability management.

It is as a development technique that open source has been most effectively studied.

Indeed, the best-known open source literature is far more useful as a study of open source as a

8 See “Can you eat goodwill?” in Ghosh, 1998; also, interview with Linus Torvalds 1996 & 1998,

published in First Monday, www.firstmonday.org/issues/issue3_3/

software development model than of economics or anything else.9 This is only to be expected,

as most people whose expertise lies closest to open source software development (as

participants themselves) do not have a significant expertise in socio-economics, but they can

share their development experiences, while most socio-economic researchers are not only

very new to the field of open source, but face a complete lack of empirical data resulting in a

literature largely based on anecdotes.

3. Where is the data on FLOSS activity?
The absence of empirical, factual and verifiable data on a large scale is clearly a

major disadvantage to most kinds of research into the FLOSS phenomenon. Previous

experience from the very few extensive surveys carried out so far10 suggest that quantitative

and qualitative empirical survey methods can be useful. However, surveys can introduce

biases that can be difficult to calculate. Tools and systems to analyse the traces left behind by

collaborative activity in the form of software source code or discussion archives – Internet

archaeology? – can be much more useful in finding hard facts (Ghosh & Ved Prakash, 2000).

But such an “Internet Archaeology” is just beginning.

The free software (or open source) "community" is much talked about, though little

data on this community and its activities is available. Free software and open source are

considered competing definitions of this community or phenomenon. For researchers into this

phenomenon, especially economists, the fact that software is free11 is what makes analysis

difficult since tools for measurement without the use of money are not sufficiently advanced.

However, the fact that software source code is open provides a solution. Source code is a fact:

it includes pure hard data that can be gathered through automated analysis producing results

far more objective than any sample-based interactive survey.

The Orbiten Free Software Survey12 in May 2000 first developed the basic software

tools and methodology to conduct an automated scan of software source code to extract a

body of empirical data suitable for analysis and description of the free software/open source

community.

These software tools have been further developed for a second Orbiten survey, as part

of the FLOSS project13 funded by the European Commission’s IST programme14, and are

described further later in this paper.

9 see e.g. Raymond 1998
10 Robles 2001, FLOSS 2002, BCG 2002
11 Used here in the sense of “without payment” – not in the sense of “freedom”, which is the sense

intended by the originators of the term Free Software
12 http://www.firstmonday.org/issues/issue5_7/ghosh/index.html
13 http://www.infonomics.nl/FLOSS/
14 http://www.cordis.lu/ist/

4. Non-monetary measurement
To measure price-based economic activity is straightforward – individual transactions

are clearly identified, transactions can be tracked and collated into defined and segmented

markets, and the activity on price-based markets can be measured. By definition, there is

always a price on everything.

Without money as a tool of measurement, you must find other ways of quantifying

value, and you must identify the different systems of ascribing value and exchange rates

between them. Furthermore, without identifiable explicit transactions you don’t have

explicitly identifiable transactors – i.e. you don’t know who’s doing the valuing, the

production, or the consumption.

The broad question of identifying who is doing how much of what with whom is

something that gets concisely focused in a price market, by examining a transaction, a price,

or a collection of transactions in a market.

On a cooking-pot network such as the FLOSS developer community, without explicit

identifiable transactions, the “who” is a non-trivial question, as there are no clearly identified

transacting parties to any identifiable exchange. The closest equivalents to transacting parties

are contributor groups, such as “the Linux developer community”.

Such amorphously defined groups change shape, and often have a radiating identity –

with a central core of group members where contribution peaks, surrounded by members of

reducing contribution and group identity. The sharpness of the contrast between centre and

surround, peak and valley, is what defines the cohesiveness of the group, and determines its

suitability for treatment as a single economic entity. Identifying these groups involves

measuring contribution levels and clustering contributors.

Understanding the interaction between economic entities – who is doing what with

whom – involves studying shifts in patterns of membership and cross-membership between

different groups. In the case of FLOSS, for instance, the economic dependence and value flow

across free software / open source projects such as Linux, Perl and various parts of GNU/FSF

can be mapped across time by tracking the authorship of program source code and identifying

author group membership. Tracking authorship is quite easy in theory, though it isn’t very

easy in practice since authors aren’t always easy to identify, as the discussion in section 6.1,

Authorship information, shows. Once authors are identified their group membership can be

determined by following them and their source code components across projects.

There is also the possibility of identifying dependencies directly from activity traces

in Internet communities, or in software source code, in a form of “Internet archaeology”.

Internet communities have explicit or implicit references encoded into individual postings,

and mapping them is a non-trivial but feasible task15. So does software source code, where

individual components refer to others in a fairly explicit process. Indeed, dependency as

shown in function calls was the subject of a well-known poster available on thinkgeek.com,

based on an analysis of the Linux kernel by Paul “Rusty” Russell16. At a somewhat less

detailed level, it is also possible with appropriate heuristics to identify the dependency

between source code packages – and to impute from that the dependency and “trade” between

clusters of authors contributing to such packages.

Tracking such value flow could make it possible to model and predict group

membership, flux in exchange and membership between groups. It could even help identify

the value exchange rate across groups – there is a measurable value given to GNU/FSF

software within Linux groups, which translates to value placed on authors of such software (a

proxy for which is “reputation”); but probably much less value is given by Linux

programmers to members of and content from, say, rec.music.early, a newsgroup on early

music.

Measures of contribution, its concentration and distribution within groups can help

model shape changes within groups – enabling one to predict their disintegration, for instance,

or pressures towards commercialisation or guild-type segmentation (by shutting out non-

members).

Determining who is doing how much is partly a problem of quantification. Although

no simple measure such as number of transactions or price levels is possible, other indicators

of value flow and proxies for value can be used.

For example, it is possible to monitor producer/consumer activity and concentration

by area – such as population, frequency, distribution and overlap among participants in Linux

and perl developer communities, or readers of newsgroups such as rec.pets.cats and

rec.music.classical.

More practically useful measures are possible. The health of a cooking-pot economy

can be measured through “macroeconomic” means. These could include: the lurker

coefficient, indicating the concentration of active participants within a group and arrived at by

calculating the ratios of contributions to contributors. This relates to what may be called free

riding, but for open source, or Internet communities in general, free riding may be the wrong

15 Marc Smith, Microsoft Research, http://netscan.research.Microsoft.com
16 E-mails on file with author. Poster available at http://www.thinkgeek.com/stuff/fun-stuff/3884.shtml

term since it implies a one-way transfer of value (to the free-riders) while lurkers are often

thought to bring value to a community.17

However, a high lurker coefficient may affect the motivation of the relatively small

number of active participants to contribute free of charge and hence encourage barriers,

analogous to the formation of guilds – or a shift to price-based model, as in the case of the

Internet Movies Database, which was free and entirely non-monetary when users were active

contributors, but is now advertising-based18.

Equivalence measures, quantifying links between information exchanges and price-

based markets outside, are possible too. These could be based on time spent in “free”

production or by comparing equivalent priced products, where applicable.

The non-monetary-with-implicit-transaction characteristics of cooking-pot markets

are ever present on the Internet. Where to start trying out new forms of measurement of such

economic activity? Free software seems an obvious choice.

5. Free software developers: a starting point for measurement
In the past few years there have been some surveys conducted of developers, though

usually on fairly small samples and far from comprehensive. No survey actually looks at what

is perhaps the best source of information on free software (and the only source of objective

information) – the source code itself. This was attempted first as an experiment in late 1998

developed into the Orbiten Free Software Survey19. Although there have since been other

surveys of authorship20 and many of the relatively recent web sites that provide an

environment for open source development such as SourceForge21 provide some statistics,

these often do not adopt the approach of looking at the free software community from the

bottom up – from the facts as they are created, rather than as they are reported.

5.1. How software tells its own story

The Orbiten Survey took advantage of one of the key features of the software

development community. In contrast to other non-monetary exchange systems (“cooking pot

networks”) on the Internet such as newsgroups and discussion forums, much of the activity

around is precisely recorded. The “product” – software – is by nature archived. Since source

code is available, the product is open to scrutiny not just by developers, but also by

17 E.g. Linus Torvalds on how the (non-paying, “free-riding”) user base for Linux is “actually a larger

bonus than the developer base” quoted in Ghosh 1998.
18 “Is reputation a convertible currency?” in Ghosh 1998
19 Ghosh, 1998
19 Ghosh & Ved Prakash, 2000
20 Dempsey et al. 2002, Also, FLOSS 2002 Part V was a follow up to the 2000 Orbiten source code

survey.

economists. Arguably all economic activity: production, consumption and trade – in the

Internet’s cooking-pot markets is all clearly documented, as it is by nature in a medium where

everything can be stored in archives.

The difference between software and discussion groups – where too the “product”,

online discussions, is available in archives – is that software is structured. To understand

what is going on in a discussion group, one might need to read the discussions, which is quite

complicated to do in an automated fashion. However, reading and understanding software

source code is by definition something that is very easily done by a software application.

Software source code consists of at least three aspects that are useful for economic

study. It contains documentation – the least structured of all the data here, since it is written in

a natural language such as (usually) English. This provides information on among other

things the authorship of the software. Headers are called different things in different

programming languages but perform the same function, of stating dependencies between the

software package under scrutiny and other software packages. Finally, the code itself provides

information on the function of the software package. As an automated interpretation of this is

exactly what happens when the program is compiled or run, there may be far too much

information there to be usefully interpreted for an economist’s purpose. But it is possible to

have an idea of the importance or application domain of the code in some subjective (if well-

defined) sense – it works with the network, say, or has something to do with displaying

images.

Naturally these categories are not sharply divided – indeed most authorship

information for individual components of a software package may be present through

comments in the code, which fits, for current purposes, the category of documentation.

There are formalized procedures for authors to declare authorship for entire packages

on certain repositories and archives, but such information needs to be treated carefully tooi.

The data may be reliably present, but its semantics are variable. Usually such “lead authors”

hold responsibility for coordination, maintenance and relations with a given repository, but

data on other collaborating authors – let alone authorship of individual components – may be

entirely missing. On the other hand such detailed data are usually present in the source code

itself.

5.2. What may be inferred

There is little point doing a small “representative” survey since results are

meaningless unless large amounts of software are processed. Given the data at hand, and the

21 www.sourceforge.net

degree of structural complexity for automation, there is a cornucopia of interesting findings to

be made. At the very simplest, a map of author contribution can be made, resulting in an

indicator of the distribution of non-monetary “wealth”, or at any rate production. This is in

theory simple to do – count the lines of code and attribute that figure to the author(s) with the

nearest claim of credit.

More complicated is to look for links between projects and groups of projects, as well

as links between groups of authors. The former can be done by looking for dependencies in

the source code – references from each software package to other software packages. The

latter is inferred through the identification of authors who work on the same project or group

of projects. Of course both these indicators refer to one another – projects with related authors

are in some way related projects; authors of a project that depends on another project are in a

way dependent on that other project’s authors.

Measuring such dependencies and interrelationships can provide an insight into the

tremendous and constant trade that goes on in the free software cooking-pot network, and can

probably also provide an indicator of the relationship with commercial software and the

(monetary) economy at large. Finally, the value of all such parameters can be applied over the

fourth dimension, either using a simple chronology of time, or the virtual chronology of

multiple versions of software packages, each of which replaces and replenishes itself wholly

or in part as often as every few weeks.

6. What is in the source: extracting empirical data from software
source code

We proceed to look further into the details and format of empirical data that can be

extracted through a primarily automated scan of software source code. The degree (and

reliability) of extractability, as it were, depends on the type of data extracted. These fall into

four broad categories.

• Authorship information for source at the sub-package/component level

• Size and integrity information for source code at the package level22

• The degree of code dependency between packages

• Clusters of authorship: groups of authors who work together, identified by

their joint work on individual packages

22 WIDI 2000; Jones 2002
22 a package, loosely defined, is several files distributed together. Usually a package can be reliably

dated to a specific version or release date. Sub-packages are the individual files or collections of files at the next
lower level(s) of the distribution directory structure

All these data can also be collected chronologically, i.e. over different versions of

source code or of source packages at different points in time.

6.1. Authorship information

Authorship information is perhaps the most interesting yet least reliable of the data

categories. Although most FOSS developers consider marking source code they’ve written as

important23 they apparently do not take sufficient care to do so in a consistent manner.

Claiming credit is usually done in an unstructured form, in natural-language comments within

source code (such as “written by”, “author” or copyright declarations), posing all the

problems of automated analysis of documentation. Several heuristics have been used,

however, to minimise inaccuracies and are described further in the technical documentation

for the software scanning application CODD24.

Particular issues or biases that have not yet been fully resolved include several cases

of “uncredited” source code25. This is either a result of carelessness on the part of authors, or

in some cases, a matter of policy. Developers of the web server Apache26, for instance, do not

sign their names individually in source code. A large amount of important source code is the

copyright of the Free Software Foundation, with no individual authorship data available27.

Although one must be careful to tailor credit extraction methods to specific source code

packages if highly detailed analysis is to be performed, the integrity of the data in general is

not necessarily affected by the method described above. Indeed, in general this method of

determining authorship by examining the source code itself shares (some of) the bias of

alternative methods towards crediting lead authors, as many authors who contribute small

changes here and there do not claim credit at all, handing the credit by default to lead

authors28.

23 According to the FLOSS developer survey, 57.8% consider it “very important” and a further 35.8%

don’t consider it “very important” but claim to mark their code with their names anyway; see
http://floss1.infonomics.nl/stats.php?id=31

24 Designed by Rishab Ghosh and Vipul Ved Prakash. Originally implemented by Vipul Ved Prakash;
further developed and currently maintained by Rishab Ghosh and Gregorio Robles. The first version of CODD was
created in 1998 and and stands for“Concentration of Developer Distribution”. See also http://orbiten.org/codd/

25 This is a significant, but not a huge fraction of code: in the scan of over 22,000 projects for the
FLOSS survey, about 10% of code was uncredited; for a scan of 3 versions of the Linux kernel, about 14% was
uncredited. In the original Orbiten survey of 3,149 projects, 8% was found uncredited. See FLOSS 2002 Part V,
Ghosh & David 2003, Ghosh & Ved Prakash 2000.

26 www.apache.org
27 Several authors formally assigned their copyright to the FSF in order to protect themselves from

liability and increase the enforceability of copyright. Assignment records are not yet available for access to
academic research.

28 There is a counteracting bias introduced by the CODD heuristics, which usually give equal credit to
multiple authors when they are listed together with no identifiable ranking information (thus narrowing the
difference between a lead author and a minor author in case they are listed jointly).

http://floss1.infonomics.nl/stats.php?id=31

6.1.1. Alternative methods

There are alternative methods of assessing authorship of free/open source software.

Typically, they are based on more formal methods of claiming credit. In the Linux Software

Map, for example, it is usually a single developer who assumes the responsibility for an entire

package or collection of packages that are submitted to an archive. On collaborative

development platforms such as SourceForge, similar methods are used; specific authors start

projects and maintain responsibility for them. With these methods, assessing authorship is

limited to collating a list of “responsible” authors. Clearly the semantics of authorship here

are quite different from what we have previously described, since “responsible” authors may

be responsible for maintenance without actually authoring anything, and in any case there are

several contributors who are left out of the formal lists altogether. Thus, any attempt at

identifying clusters of authors is likely to fail or suffer considerable bias.

A more detailed and less biased (but also less formal) method of author attribution is

used by developers themselves during the development process. Either through a version-

control system, such as CVS or Bitkeeper29, or simply through a plain-text “ChangeLog” file,

changes are recorded between progressive versions of a software application. Each change is

noted, usually with some identification of the person making the change – in the case of a

version control system this identification, together with the date, time and size of change is

more or less automatically recorded. However, again the semantics vary – most projects limit

to a small number the people who can actually “commit” changes, and it is their names that

are recorded, while the names of the actual authors of such changes may or may not be.

Naturally, no method is perfect, but the purpose of the above summary is to show that

formal author identification methods do not necessarily provide much additional clarity into

the nature of collaborative authorship, while introducing their own biases. Depending on the

specific analysis planned and the level of detail, an appropriate credit data extraction system

must be chosen. In general, for a varied and large spectrum of source code, the CODD-

Ownergrep method seems to be the most accurate30.

6.1.2. Project “culture” and code accreditation

It is important to note that applying any of these tools to free/open source projects

requires an understanding of the “culture” of each project. The more detailed the data and the

more one intends to interpret it, the better such understanding needs to be, since source code,

versioning information and so forth are not perfectly formalised. Coding styles and

29 CVS: Concurrent Versions System, http://www.cvshome.org; Bitkeeper: http://www.bitkeeper.com
30 Furthermore, CODD’s credit extraction system is being extended to incorporate CVS and Bitkeeper

version tracking information, which would provide an alternative reference point for credit data.

http://www.cvshome.org/

organisational conventions differ from project to project, with the result that the same data

can have different semantics in different projects. This is one reason the CODD-Ownergrep

method is likely to remain useful for a long time – although it doesn’t always provide very

much detail, it is arguably more comparable across a range of projects and versions than any

other method.

Using versioning information as described above provides much more depth of

information – including authorship credits on a per-line basis – but also provides more data

points that may be subject to incorrect or over-interpretation without a thorough

understanding of conventions in each project’s “culture”. This is especially true for versioning

data since versioning systems don’t necessarily distinguish between “authors” and

“committers” (the “editors” who actually approve and enter a submitted change into the

source code)31. As a result, versioning data can be less comparable across projects and more

suited to in-depth study of specific, carefully chosen project cases. Without adjusting for

project “culture”, it is easy to over-interpret data and come to incorrect conclusions, as

described by Tuomi32.

6.2. Size and integrity

There are many ways to value the degree of production a specific software package

represents. Especially when it does not have a price set on it, the method of choosing an

attribute of value can be complex. One value, which makes up in its completely precise,

factual nature what it may lack in interpretability is size. The size of source code, measured

simply in bytes or number of lines, is the only absolute measure possible in the current state

of F/OSS organisation and distribution. Specifically, measuring the size of a package, and the

size of individual contributions, allows something to be said about the relative contributions

of individual authors to a package, and of the package to the entire source code base. It may

also be possible to impute time spent in development or some a monetary value based on size.

Size is not the only (or always the most accurate) measure of the value of a given

body of source code. Functionality is another useful measure, and the software engineering

literature abounds in attempts to develop indicative measures of functionality, notably

function-point analysis33. A less versatile but far simpler method that scales well and can be

applied to source code is to count function definitions. A function (also called a procedure or

method) is the smallest reusable unit of code consistent across several programming

31 A comparison of CVS and CODD-Ownergrep on certain projects highlight the distinction between

author and committer and indicate how CODD-Ownergrep may be a more generally reliable method of
determining authorship – see Robles et al 2003

32 Tuomi 2002

languages. Although determining where a function is defined in the source code is certainly

language-specific, the fact is that most F/OSS code is in C or C++, and therefore can be

scanned for function definitions according to the syntax of those languages (similar scans can

be performed for other common – though less popular – languages such as Perl or Python).

Studying author contribution to source code through function counts rather than bytes of code

provides at worst an alternative perspective, and at best a new set of useful indicators of how

contribution can be valued.

In order to calculate the size of a package it is important to try to ensure its integrity.

A given package – especially on development platforms – usually includes derivative or

“borrowed” works that have been written separately by other developers, but may be required

in order to for the package to run. These are not necessarily identified as “borrowed” and

could, in theory, be counted twice. Furthermore, they can artificially inflate the apparent

contribution of an author of a “borrowed” work. CODD tries to resolve this by identifying

duplicate components across the entire scanned code base and allocating them to only a single

package wherever possible. This promotes integrity and avoids double-counting, and also

provides information useful for finding dependencies between packages, by replacing

“borrowed” works with external references to those works.

6.3. Code dependency between packages

Since software is by nature collaborative in functioning, software packages usually

depend on features and components from several other packages. Such dependencies must be

explicitly detailed in a way that they can be determined automatically, in order for an

application to run. As such, these dependencies can be identified through automatic scanning;

indeed there are several developers’ tools that serve this purpose. Such tools normally provide

a high level of detail regarding dependencies (i.e. at a function call level), which may not be

required for the purpose of analysis. Author credit information is rarely available at anything

more detailed than file level, so dependency information at a more detailed level may not

necessarily be very useful. Moreover, such detailed analysis would be computationally

exceptionally hard to perform for 30,000 software packages!

Dependency analysis, like the other CODD tools, can be applied at varying levels of

granularity. Due to the rather flexible definition – in developer terminology, as well as in this

paper – of a “package”, the method of encoding, and thus also of determining dependency

links can differ widely across code samples. While sampling the Linux kernel code base,

“packages” are components of the Linux kernel and tightly integrated; when sampling a

33 Longstreet 2001. For the use of function points in the estimation of value production in national

accounts, see Grimm et al 2002.

Linux software distribution such as Red Hat or Debian, the entire Linux kernel itself may be

treated as a single “package”, with much looser links to other packages within the code base.

When code is looked at in more detail and packages are tightly integrated, the method for

identifying dependencies is very different from when packages are examined at a more

abstract level.

It is possible, however, to develop simple heuristics to identify dependencies at the

package level34. One method is to retain information on duplicate files and interpret that as

dependency information: if package P contains a file that has been “borrowed” from package

Q where it originally belongs, P is dependent on Q.

Another method is based on header files. As described earlier, headers (called

different things in different programming languages) define interfaces to functions, the

implementations of which are themselves embodied in code files35. In order to access

externally defined functions, a code file must include36 a declaration for it, typically in the

form of a statement referring to a header file. This is treated by CODD as an external

reference. Various heuristics are used to identify the package where header file functions are

actually implemented, and external references are resolved as links from one package (which

includes or the header file and calls the functions declared in it) to another package (which

defines the functions declared by the header file).

6.3.1. Identifying function definitions as an aid to dependency analysis

One accurate, but time-consuming heuristics that can be used for this task is to

identify and map function definitions (see above, Size and integrity, p. 15). This way, a

database is created with information on all identified functions defined in the source code,

keeping track for each function the code file and package in which it is defined, as well as the

header file in which it is declared. When CODD finds a dependent code file that includes a

header file, it matches the functions declared in that header file (and potentially used by the

dependent code file) to the various supporting code files that define those functions.

Obviously, this technique is suitable only for relatively small projects as the resources

consumed by this process grows exponentially for larger projects37.

34 There are developer tools which do this, producing different outputs for different purposes. This

section illustrates a simple way of performing such dependency analysis as implemented in CODD.
35 For the C/C++ programming languages, which amount for the largest proportion of general-purpose

F/OSS, files ending with “.h” or “.hpp” are headers and those with “.c” or “.cpp” contain implementation code,
while scripting languages such as Perl or Python do not use separate header files.

36 Using the #include command in C/C++ source code, and other methods in other programming
languages, such as use in Perl.

37 For the LICKS project, when applied to Linux kernel version 2.5.25, this method identified over 5
million function dependencies for some 48,000 functions defined across more than 12,000 source code files. This
was then summarised to 8,328 dependencies between 178 projects. Although the Linux source code was only
about 175 Mb, over 600Mb of dependency data was generated. See Ghosh & David 2003

The above description should illustrate that it is possible to build dependency graphs

for source code; although there may be several methods of doing so38, the resulting

dependency information is in any case very useful. Arguably a small package that is required

by several others is more valuable (or valuable in a different way) than a large package

without dependents. So further analysis of dependency information is very useful in order

better to gauge the value distribution of packages – especially if this can be combined with

information on authorship.

6.4. Clusters of authorship

Collaborative authorship implies that authors collaborate, i.e. that they author things

together39. The degree of such collaboration is yet another attribute that can be found in the

source code. Indeed, it is found through the analysis of data extracted from the first two steps

described above, author credits and contribution size. The purpose of identifying clusters of

authorship is simple: from individual actors with unclear motives and indeterminate flows of

value to other actors, authors are transformed into somewhat more coherent groups whose

interaction and inter-dependence becomes much easier to measure. Moreover, with

chronological analysis the movement of individuals within and between groups can also be

mapped, providing an insight into the functioning and behaviour of the entire F/OSS

development system.

As described in a previous section (see “radiating identity”, page 8) amorphous

groups of collaborators tend to cluster around a concentrated centre-point. In order to have

maximum flexibility, as well as for practical reasons,40 the identification of authorship

clusters is carried out by a specially designed CODD-Cluster application41.

38 The RPM package system used by Red Hat Linux includes package-level dependency information that

can be extracted easily; dependency information is also provided in similar packaging systems from other Linux
distributors. At the other end of the spectrum, the utilities Cflow and Calltree provide detailed function-call-based
dependency analysis – see http://barba.dat.escet.urjc.es/index.php?menu=Tools&Tools=Other

39 What is found in the source code is not, strictly speaking, evidence of collaboration among authors,
but their “co-participation” in the authorship of a given project or module – i.e. appearance of authorship credits
for multiple authors of a single source code module. Other data sources, such as discussions on mailing-lists
related to specific projects – can be used to prove collaboration among authors. However, there is a strong
argument that “co-participation” in itself implies a high degree of collaboration. Collaboration is not necessarily
implied in the case of joint authorship credit appearing in, say, academic papers, where it is possible (and
common) for some of the co-authors to have only made comments, or written sections independently of other
authors. However, for a computer program at the level of a single file or source code module, collaboration is a
pre-requisite in order for the program to function at all, and any released version that would be available for
analysis has necessarily gone through a process of coordinated modification where contributing authors have, in
addition to control over their own contribution, some degree of awareness of (and control over, or at least
acquiescence towards) the functioning of the rest of the module. Without such a degree of coordination there
would probably not be a common released version, and the program would not function. This seems to justify the
assertion that “co-participation” of authors in a given module, project or group of projects implies their
collaboration.

40 The computational difficulty of using standard statistical packages on 30,000 x 20,000 matrices in the
case of identifying clusters across large code bases

41 Designed by R. A. Ghosh and implemented by Ghosh, and Gregorio Robles.

The aim of this stage of data extraction – analysis, really, since no further raw data

are extracted – is to identify clusters of authorship based on authors’ degree of collaboration

on common projects. This results in clusters of authors who work together42. It also results in

equivalent clusters of projects – the result of the collaboration of authors in a given cluster.

Clustering is performed as a three-stage process. First, tables of project-wise author

contribution are combined into a graph. This is a weighted bi-directional graph with projects

(packages) forming the vertices. A link between two given vertices exists if there is at least

one author common to the two projects. The weight of this link is calculated as a function of

the degree of commonality (i.e. the number of common authors as a proportion of the total

number of authors for both projects) as well as the degree of common contribution (projects

whose common authors contribute more to each project are linked with a higher weight than

projects with only minor authors in common). The link also preserves information regarding

the common authors themselves, including their level of contribution to each project.

The commonality and degree of common contribution are defined below.

Given two projects P and Q, where P & Q represent the set of authors for each

project, R is the set of common authors (P ∩ Q) and |R| the number of authors in R (i.e. the

number of authors in common):

commonality = (|R| / |P|) * (|R| / |Q|)

This measure provides an indicator of the proportion of authors common to two

projects, regardless of their contribution to each project. The justification for this measure is,

first, that contribution cannot only be measured in terms of credited source lines of code;

second, that common authors may play a role in enhancing collaboration between the two

groups of developers well beyond their direct contribution to the project source code.

Direct contribution is incorporated in a second measure. Given that PR represents the

contribution of all authors in the set R to the project P:

shared = PR * QR

42 See note 39. Developers who are linked together through this sort of clustering cannot be said to

collaborate in the same way as do “co-participants” in a single project. Clustering would links two developers who
work on no single project together but collaborate in different projects with a third common developer. Although
these two developers are not direct collaborators, they do form part of a collaborating community through the
interaction they have in common with the developer(s) that provide this link for clustering. Identifying the nature
of collaboration in such communities helps to throw light on the development process, and may be supported with
additional empirical evidence through the analysis of developer discussion groups. This assumption of a human or
socialising element in collaboration between developers is key to the clustering model adopted, which essentially
treats individuals common to multiple groups as forming links between these groups. An empirical analysis of the
nature and composition of clusters over time (i.e. progressive release versions of software) could support this
assumption, but it would seem to hold even for a static analysis given an understanding of the importance of
discussion lists and other “socialising” interaction for the collaborative F/OSS development process.

 In order to calculate a single value as the weight (w) of edges in the graph

representing projects, these two attributes are combined. Two functions have been tested, and

may suit different purposes. The first is a simple product:

weight = commonality * shared

As this results in the weight reducing rapidly as commonality and shared contribution

reduce, sharpening differences between projects, a slight modification appears to make it

more useful in identifying collaborations through this graph:

weight = √(commonality * shared)

Some properties of calculation of weight are:

1. the weight is a function of both the proportion of authors in common as well as the

proportion of project code written by common authors

2. commonality is not biased towards the size of the author community. If all authors are

common, this attribute will always be 1.0. If half are common, this will always be

0.25. Naturally, it is clearly biased to favour authors with a low contribution. This is

both an obvious result as well as the reason for choosing to calculate commonality

and shared contribution separately. They could be combined in one function that

weighted common authors by their proportion to the total number of bytes and total

authors, but that would assume a sort of continuum of authorship, rather than treating

authors as discrete entities. This seems a good reason to provide a positive weight to

authors as individual members of a team regardless of their contribution, in addition

to the calculation of code contributed in shared contribution.

3. shared is not biased by relative differences in author contribution. I.e. if half of P and

half of Q are written by the same authors, shared will always be 0.25 regardless of

the number of authors or their distribution. If the distribution was, say, {0.4, 0.1} for

P and {0.1, 0.4} for Q, a dot-product would return 0.08 although there's no

difference, as far as we're concerned, between that author distribution and an equal –

{0.25, 0.25} and {0.25, 0.25} – distribution, the only case where a dot-product would

return the correct (for our purposes) result of 0.25.

6.4.1. Building clusters

In the second stage, the graph is analysed to identify vertices (projects) as potential

cluster centres. Attributes useful at this stage include: the size of a project; the number of its

authors; the number and strength of its links to other projects, by common authorship or by

code dependency. For the purpose of identifying clusters with high levels of intra-cluster

collaboration and relatively low levels of inter-cluster collaboration, starting from the best-

linked projects – those with the highest number of and highest weighted links – is an obvious

choice.

Once (some) potential cluster centres are identified, building a cluster around them is

a fairly uncomplicated graph traversal problem – all links with a weight above a user-defined

threshold are followed, and each visited vertex gets added to the list of projects belonging to

the cluster. The authors on each traversed edge get added to the cluster of authorship. The

“central” role of an author within a cluster is determined by his43 relative contribution to

projects within the cluster, or by how prolific a collaborator author is (i.e. the number of

clustered projects to which the author is common).

This process is repeated, progressively identifying more clusters of authorship until

all projects (and all their contributing authors) are placed within one or another cluster. It is

important to note here that a cluster is not created as just a list of authors, but as a list of

authors and the projects they collaborate on.

6.4.2. Analysing clusters: collaborators and non-collaborators

Within each cluster a clear and analytically useful structure appears: one based on a

new measurement criterion that obtains through the graph traversal method, that of degree of

collaboration. At its simplest, we see that there are collaborating authors – who are credited

with authorship of more than one project – as well as non-collaborating authors, who are

credited with authorship of only one project44. “Non-collaborating” authors do collaborate, of

course, with other authors in developing that single project, but as we are trying to identify

groups of collaborators, it is more useful to treat as collaborators only those who act as

bridges between possibly distinct groups of people. The coherent delineator for such groups is

the project that they work together on, hence this definition of “collaborating author” as one

who contributes to more than one project, and therefore participates in more than one group

of authors.

Following the graph structure, each cluster is built on the basis of collaborating

authors who form the link between projects in the graph. Non-collaborating authors are added

to the cluster by including all remaining authors for each project that has been linked into the

cluster. Thus, if the set of authors for project P comprises collaborators and non-collaborators:

P = (Pcollab ∪ Pnoncollab)

43 F/OSS authors are almost 99% male, see BCG 2002 or FLOSS 2002
44 There can be some inaccuracies in the underlying data that result in higher than actual numbers of

“non-collaborators”. This is because of situations where an author uses multiple identities to claim credit, and
these identities may not be resolved in the data extraction process (manually or automatically). In some cases,
these multiple identities may be used for separate projects (i.e. instead of a1, a2, a3 appearing as joint authors of

The authors in Pcollab will be included in the cluster C by virtue of being authors of projects

other than P and thus appearing on edges in the graph. The authors in Pnoncollab will be included

in cluster C because project P gets included along with the set of its collaborating authors

Pcollab and therefore all the remaining authors of P are drawn into the cluster. The logic for this

should be clear – Pnoncollab are part of this collaborative cluster of authors although they only

contribute to one project, because their co-authors in that project link them to groups of

authors in other projects.

The simple distinction between collaborators and non-collaborators, although it does

lead to interesting indicators of levels of collaboration for different groups of authors, can be

made more complex by measuring the degree of collaboration for the “collaborators”. Since a

collaborator is an author who links two projects in a cluster, the number of links an author

appears on is a simple measure of the author’s degree of collaboration. Arguably, if authors

are to be ranked within clusters (rather than within projects) based on their contribution, their

degree of collaboration may prove to be more important than their contribution in bytes of

source code. Indeed, preliminary clustering analysis of a number of projects shows that there

isn’t necessarily a strong correlation between high degrees of collaboration and high levels of

source code contribution. When projects are looked at in detail (at the level of modules in the

Linux kernel, say, rather than at a higher level where the entire Linux kernel is treated as a

single “project”) it often appears that small modules are written largely by developers with

low levels of collaboration, while a number of highly collaborative developers contribute

small parts to several different projects, tying those distinct groups of people together.

6.4.3. Clustering and dependency: cause and effect?

One reason for putting together information on clusters of authorship and

dependencies between the packages they develop is to track “trade flows” among author

clusters. As discussed in section 4, in the absence of monetary measures this helps answer the

question “Who is doing how much of what with whom” – the clusters of authorship provide

the (group) identities of the actors, while the underlying dependencies between the packages

they collectively develop provides an understanding of the volume of their interaction.

However, since clustering analysis results not just in identifying groups of authors,

but also links between packages (based on the existence common authors), there is a line of

investigation possible into the possible correlation between common authorship and code

dependency. Since data from both dependency and author clustering analysis can be attached

to package pairs (the dependency links between any given two packages, and information on

projects P, Q, R, different identities appear for different projects, a1 for P, a2 for Q and so on). Thus, instead of one
fairly “collaborative” author a, one could see multiple “non-collaborative” authors a1, a2, a3 etc.

their degree of common authorship: commonality, shared contribution), it is possible to

analyse the effect of dependency links and common authorship (and vice versa). Naturally,

such effects may obtain only in future versions of the packages concerned, and the data is

equally suitable for analysis across multiple source code versions45.

6.5. Technical details: summary methodology and data structure

The data acquisition methodology is fairly specific to the structure and semantics of

source code. There are several steps involved in acquiring the data, an overview of which is

presented below (table 2).

6.5.1. Table 2: Summary of stages of source code analysis and resulting data
format

Method Explanation Resulting data
Authorship credits Heuristics for determining and

assigning authorship of code
segments at the file or package level.

List of the form {author,
contribution in bytes of code}
generated for each package

Duplicate file resolution Many files are included in several
packages, intentionally or by mistake.
This results in double counting (a file
is credited to its author multiple
times, ones for each package where it
occurs). Heuristics are used to resolve
this problem and assign each file to
only one package.

Corrected version of authorship
credit list. List of shared files for
each package.

Dependency identification Files in one package may link to files
in other packages. Heuristics are used
to identify these links. With the
addition of function-definition
identification, a very accurate
procedure results in identifying
dependency links based where
functions are uses and defined

For each code file in each
package, a list of supporting
files together with the packages
they belong to. With the
addition of function-definition
identification, function names
are also available.

Author clustering Using a bi-directional graph structure
where vertices represent packages
and edges connecting them are
weighted based on the existence and
contribution of common authors,
clusters of authors/packages are
formed. The algorithm used does not
split the graph into exclusive clusters,
but only finds a single cluster given a
central vertex. This allows flexibility
in deciding how clusters are to be
formed, based on varying edge-
weight and distance thresholds, and
allows the identification of
overlapping clusters.

The author/project graph.
Clusters of packages and the
authors common to them, with
information on “non-
collaborators”.
For each project pair, data on
commonality between projects,
authors’ degree of collaboration,
number of common authors.

45 Such analysis is being carried out as part of the LICKS project. See Ghosh & David 2003.

7. Conclusion, Outlook, and practical considerations
This paper has proposed methodology to extract, interpret and analyse empirical data

from software source code. It describes an evolving methodology and tools in its current state,

after having been tested and applied at various stages of development to diverse source code

samples. Two projects that have used these tools are worth mentioning here: FLOSS and

LICKS.

7.1. The FLOSS source code scan / Orbiten 2

The FLOSS project included a component (described in Part V of FLOSS 2002,

intended as the 2nd Orbiten Free Software Survey) that applied many of the techniques

described in this paper on a very large base of software, roughly 40 Gigabytes of compressed

source code, i.e. approximately 3 billion source lines of code. Partly due to the scale of this

code base, the analysis was carried at a fairly high level in that packages are rather large and

not broken down into smaller sub-packages (the Linux kernel is treated as a single package,

which means that dependencies or clusters are not identified for kernel components).

Additionally, only current available versions were scanned, with no historical data or

chronological analysis. Current analysis tools in the CODD/CODD-cluster suite are entirely

non-interactive software and fairly technical – i.e. they are not user-friendly to operate and

need programmer skills for customisation tasks. Clustering analysis does not provide

graphical or visualization output, and there are at present no software tools as part of this

project that perform chronological analysis. However, the development of such tools may not

be necessary if it turns out that analysis of historical trends, say, is practical with the

application of standard statistical analysis packages to data as currently generated. So far, this

has seemed impractical – the difficulty of dealing with a graph of over 23,000 projects and

36,000 authors in a statistical package was the initial reason to develop customised methods

and tools for clustering.

A preliminary evaluation of the methodology in practice must, however, be positive.

Interesting results have been found in the dependency analysis, and a primary concern during

cluster identification is the determination of appropriate threshold values to obtain useful

results. It is perhaps unsurprising (but previously impossible to prove) that F/OSS projects are

highly interconnected, so searching for a cluster centred with a zero threshold around the

Linux kernel, say, tends to result in a huge cluster of authorship relative to the total code base.

It will take some experimentation, together perhaps with visualisation techniques, to tailor the

tools to generate clusters of manageable sizes that can be compared with one another as

distinct groupings.

7.2. LICKS: Studying multiple versions of the Linux kernel

The LICKS project (Ghosh & David 2003) has looked specifically at three versions

of the Linux kernel. Since this is a much smaller code base, it is possible to apply all the

CODD tools in considerable detail (at the sub-package level, i.e. components of the Linux

kernel rather than the Linux kernel as a single component in itself). It is also possible to apply

the function-definition identifying techniques for accurate dependency analysis (as described

in section 6.3.1, Identifying function definitions as an aid to dependency analysis) and

integrate the resulting code dependency information with the clusters of authorship to

determine the dependencies between distinct groups of authors, and identify correlations

between dependency and authorship links.

If performed over multiple versions or over time, this analysis provides extremely

interesting information on the exchange between groups, and could be a first step towards

determining the internal economics of the functioning of F/OSS development. Aspects of

participant development, migration, and reproduction become traceable.

For the first time, these methods point to the possibility of collecting concrete

empirical data and analysis based on the source code – the only hard fact in F/OSS

development – and extract the most of what is already ubiquitous, waiting to be studied.

Empirical data extraction from source code should be of great interest to all social scientists,

especially economists, but is also a valuable tool for developers to know about themselves

and their organisation. This perhaps explains F/OSS developers’ continuing interest in CODD

and the Orbiten survey46.

46 The first CODD source code scan results were published online in late 1998 and received several

hundred thousand hits in a few days, as did the first Orbiten Free Software Survey on its release in May 2000. This
despite the fact that they provided only author contribution tables, and for a very small source code base.

8. Annexure: References and Literature
BCG (2002): Survey of free software/open source developers conducted by the Boston
Consulting Group; see www.osdn.com/bcg

Boehm, Barry W., Software Engineering Economics, Prentice Hall, 1981. More details and
updates at: http://sunset.usc.edu/research/COCOMOII/

Dempsey, Bert J, Debra Weiss, Paul Jones, and Jane Greenberg, “Who is an open source
software developer?” Communications of the ACM. April, 2002.
http://www.ibiblio.org/osrt/develpro.html

FLOSS: Free/Libre/Open Source Software Study, Rishab Ghosh, Ruediger Glott, Bernhard
Krieger & Gregorio Robles, International Institute of Infonomics/MERIT,
http://floss.infonomics.nl/report/

Ghosh, Rishab Aiyer (1996): Informal law and equal-opportunity enforcement in cyberspace,
unpublished manuscript

Ghosh, RishabAiyer (1998): Cooking pot markets: an economic model for the trade in free
goods and services on the Internet, in: First Monday, volume 3, number 3 (March 1998),
http://www.firstmonday.org/issues/issue3_3/ghosh/index.html

Ghosh, Rishab Aiyer, and Vipul Ved Prakash, “Orbiten Free Software Survey”, First
Monday, volume 5, number 7 (July 2000),
[http://www.firstmonday.org/issues/issue5_7/ghosh/]

Ghosh, Rishab Aiyer, “Cooking-pot markets and balanced value flows”, in Collaboration and
Ownership in the Digital Economy, Michael Century & Rishab Ghosh (ed.), MIT Press,
forthcoming summer 2003

Ghosh, Rishab Aiyer and Paul David, “The nature and composition of the Linux kernel
developer community: a dynamic analysis”, 2003, SIEPR-Project NOSTRA Working Paper,
draft available at http://dxm.org/papers/licks1/

Ghosh, Rishab Aiyer and Ved Prakash, Vipul (2000): The Orbiten Free Software Survey, in:
First Monday, volume 5, number 7, http://www.firstmonday.org/issues/issue5_7/ghosh/

Grimm, Bruce T., Brent R. Moulton, and David B. Wasshausen, “Information Processing
Equipment and Software in the National Accounts”, NBER/CRIW Conference on Measuring
Capital in the New Economy, April 2002, http://www.bea.doc.gov/bea/papers/IP-NIPA.pdf

Longstreet, David. 2001. Function Point Training and Analysis Manual. Longstreet
Consulting Inc, Aug. 2001 http://www.SoftwareMetrics.Com/freemanual.htm

Raymond, Eric S., 1998, “The Cathedral and the Bazaar”, First Monday, volume 3, number 3
(March 1998), http://www.firstmonday.org/issues/issue3_3/raymond/

Robles-Martínez, Gregorio. et al, 2001, “WIDI: Who Is Doing It?”, Technical University of
Berlin, http://widi.berlios.de/paper/study.html

Robles-Martínez, Gregorio, Jesús M. González-Barahona, José Centeno González, Vicente
Matellán Olivera, and Luis Rodero Merino, “Studying the evolution of libre software projects
using publicly available data”, 25th International Conference on Software Engineering, 2003,
http://opensource.ucc.ie/icse2003/

Tuomi, Ilkka, "Evolution of the Linux Credits File: Methodological Challenges and
Reference Data for Open Source Research” – working paper, 2002, available at
http://www.jrc.es/~tuomiil/moreinfo.html

http://www.osdn.com/bcg
http://floss.infonomics.nl/report/
http://www.firstmonday.org/issues/issue3_3/ghosh/index.html
http://www.firstmonday.org/issues/issue5_7/ghosh/
http://www.firstmonday.org/issues/issue5_7/ghosh/
http://www.bea.doc.gov/bea/papers/IP-NIPA.pdf
http://www.softwaremetrics.com/freemanual.htm
http://www.firstmonday.org/issues/issue3_3/raymond/

	Defining the problem: non-monetary implicit transactions
	Background: the best things in life are free?
	When a gift is not a gift

	Forms of research and the role of measurement
	Free software as a way of life
	Open Source as a way of work
	Open Source as a way of software development

	Where is the data on FLOSS activity?
	Non-monetary measurement
	Free software developers: a starting point for measurement
	How software tells its own story
	What may be inferred

	What is in the source: extracting empirical data from software source code
	Authorship information
	Alternative methods
	Project “culture” and code accreditation

	Size and integrity
	Code dependency between packages
	Identifying function definitions as an aid to dependency analysis

	Clusters of authorship
	Building clusters
	Analysing clusters: collaborators and non-collaborators
	Clustering and dependency: cause and effect?

	Technical details: summary methodology and data structure
	Table 2: Summary of stages of source code analysis and resulting data format

	Conclusion, Outlook, and practical considerations
	The FLOSS source code scan / Orbiten 2
	LICKS: Studying multiple versions of the Linux kernel

	Annexure: References and Literature

